Combining Static and Dynamic Optimizations Using Closed-Form Solutions

Daniel Lundén¹ David Broman¹ Lawrence M. Murray²
¹KTH Royal Institute of Technology, Sweden ²Uppsala University, Sweden

Introduction

▶ Probabilistic programming languages increases expressiveness compared to probabilistic graphical models through:
 ▶ Stochastic branching
 ▶ Recursion

▶ Importance sampling methods (including sequential Monte Carlo methods) perform inference in probabilistic programming languages through repeated execution of programs.

▶ Static optimizations are program transformations performed prior to execution.
 Benefit: we can optimize programs offline with minimal overhead during execution.

▶ Dynamic optimizations are optimizations performed during execution.
 Benefit: we have access to information only available during execution.

▶ The local closed-form solutions we use here are:

Objective of optimization

▶ Maximizing quality of inference (e.g. low variance of estimators).
▶ Minimizing execution time of inference.

The need for static optimization

A probabilistic program (Anglican)

(defquery static
 (let [data [0.4 0.9 -0.1 -1.3 0.2 2.1]
 x (sample (normal 0 1))
 (observe (normal x 1) (first data))
 (loop [x x, data (rest data)]
 (if (seq data)
 (let [x (sample (normal x 1))
 (observe (if (> (count data) 1)
 (normal x 1) (normal 0 (+ 1 (abs x))))
 (first data))
 (recur x (rest data)))
 x))))

Corresponding graphical model

Optimized program (partially solved analytically)

(defquery static-opt
 (let [data [2.1]
 x (sample (normal -0.157 (sqrt 1.617)))
 (observe (normal 0 (+ 1 (abs x))) (first data))
 x))

Conclusion

▶ When our program ≡ a graphical model, we should always do these types of optimizations statically.

The need for dynamic optimization

A probabilistic program (Anglican)

(defquery dynamic
 (let [data [0 -1.1 2.4 1.2 -0.1 -1.4 -1.9]
 x (sample (normal 0 1))
 mix (fn [anc]
 (if (sample (flip 0.5))
 (normal anc 1)
 (normal 0 (+ 1 (abs anc)))))
 foo (fn foo [root depth]
 (let [left (mix root)
 right (mix root)]
 (if (= depth 1)
 [left right]
 (concat (foo (sample left)
 (- depth 1))
 (foo (sample right)
 (- depth 1)))))
 leaves (foo x 3)
 (map (fn [dist obs] (observe dist obs)) leaves data) x))

Corresponding graphical model

Conclusion

▶ Static optimization not a good idea due to stochastic branching
▶ Delayed sampling is a dynamic approach for these situations (see references below)

Challenges

▶ When do we use which approach?
▶ Can we get the best of both worlds by combining the two approaches within a single program?
▶ Can we define and find optimal combinations?

References

This project is financially supported by the Swedish Foundation for Strategic Research (ASSEMBLE RIT15-0012).