Overview

- Monte Carlo inference has nice asymptotic guarantees, but can be slow when using generic proposals.
- Handcrafted proposals that rely on user knowledge about the posterior distribution (‘posterior knowledge’) can be efficient, but are difficult to derive and implement.
- We propose to let users express posterior knowledge in the form of proposal programs, which are samplers written in probabilistic programming languages.
- Proposal programs can combine domain-specific heuristic algorithms with amortized inference networks, bridging the gap between automated and custom inference.

Proposal programs

- A proposal program \(\mathcal{P}\) has a subset of its random choices designated as output choices \(z\). Other random choices are internal choices \(y\). Arguments are denoted \(x\).
- Evaluating the proposal probability \(p(z; x)\) requires marginalizing over internal choices. We show that estimates of the proposal probability can be used instead in importance sampling and Metropolis-Hastings without sacrificing consistency.
- Proposal programs are easily implemented on top of a sampling-based probabilistic programming runtime.

A standard interface for proposal distributions

```
procedure SIMULATE(\mathcal{P}, x)
    z ~ p(z; x) \triangleright \text{Execute } \mathcal{P}
    \xi ~ p(\xi; z, x) \triangleright \text{Compute output probability}
end procedure
```

The new interface for proposal programs

```
procedure SIMULATE(\mathcal{P}, x, K)
y_1, z ~ p(z, ; x) \triangleright \text{Execute } \mathcal{P}
for k = 2 \ldots K do
    y_k ~ p(z; x) \triangleright \text{Execute } \mathcal{P} \text{ (excluding outputs)}
end for

\xi = \frac{1}{K} \sum_{k=1}^{K} p(z; y_k, x)

return (z, \xi)
end procedure
```

Offline optimization of proposal programs

- Proposal programs can be optimized offline to maximize objective \(J(\theta)\) for training distribution \(r(x, z)\).

\[
\min_{\theta} \mathbb{E}_{z \sim r} \left[\text{KL}(r(z|x) || p(z; x, \theta)) \right] \quad \text{is equivalent to}
\max_{\theta} J(\theta) = \max_{\theta} \mathbb{E}_{z \sim r} \left[\log p(z; x, \theta) \right]
\]

- Because proposal programs can include internal random choices, we instead optimize the following lower bound:

\[
J^K(\theta) := \mathbb{E}_{z \sim r} \left[\mathbb{E}_{y_{1:K} \sim p} \left[\log \xi(y_{1:K}, z, x, \theta) \right] \right] \leq J(\theta)
\]

- We use a stochastic gradient estimator based on the multiple-sample baseline of Mnih and Rezende (2016).

Example: Using RANSAC for posterior inference

```
@probabilistic function linear_regression_model(xs)
slope = @choice(normal(0, 1), "slope")
intercept = @choice(normal(0, 2), "intercept")
for (i, x) in enumerate(xs)
    outlier = @choice(flip(PRIOR_PROB_OUTLIER), "outlier-$i")
    var = outlier ? OUTLIER_VAR : INLIER_VAR
    @choice(normal(slope * x + intercept, sqrt(var)), "y-$i")
end
end

Probabilistic program for linear regression model

```
```
@probabilistic function ransac_proposal(xs, ys, params)
    epsilon = @choice(gamma(exp(params.eps_alpha), exp(params.eps_beta)), "epsilon")
    num_iters = @choice(categorical(params.iter_dist), "iters")
    ransac_params = RANSACParams(num_iters, epsilon)
    # Run RANSAC (uses many un-annotated random choices)
    slope_guess, int_guess = ransac(xs, ys, ransac_params)
    # Predict output variability using learned neural network
    nn_hidden = ewise(sigmoid, params.h_weights * vcat(xs, ys) + params.h_biases)
    nn_out = params.out_weights * nn_hidden + params.out_biases
    slope_scale, int_scale = (exp(nn_out[1]), exp(nn_out[2]))
    # Add noise
    slope = @choice(cauchy(slope_guess, slope_scale), "slope")
    intercept = @choice(cauchy(int_guess, int_scale), "intercept")
    # Generate outlier statuses from conditional distribution
    for (i, (x, y)) in enumerate(zip(xs, ys))
        p_outlier = conditional_outlier(x, y, slope, intercept)
        @choice(flip(p_outlier), "outlier-$i")
    end
end

RANSAC-based proposal program (RANSAC+NN)
```

Importance sampling (IS) results for different proposals

(a) IS (prior)
(b) IS (RANSAC+NN)
(c) IS (NN)
(d) Training objective